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ABSTRACT
In this paper we present BatchDB, an in-memory database engine
designed for hybrid OLTP and OLAP workloads. BatchDB achiev-
es good performance, provides a high level of data freshness, and
minimizes load interaction between the transactional and analytical
engines, thus enabling real time analysis over fresh data under tight
SLAs for both OLTP and OLAP workloads.

BatchDB relies on primary-secondary replication with dedicated
replicas, each optimized for a particular workload type (OLTP,
OLAP), and a light-weight propagation of transactional updates.
The evaluation shows that for standard TPC-C and TPC-H bench-
marks, BatchDB can achieve competitive performance to special-
ized engines for the corresponding transactional and analytical work-
loads, while providing a level of performance isolation and pre-
dictable runtime for hybrid workload mixes (OLTP+OLAP) other-
wise unmet by existing solutions.

1. INTRODUCTION
As workload characteristics and requirements evolve, database en-
gines need to efficiently handle both transactional (OLTP) and an-
alytical (OLAP) workloads with strong guarantees for throughput,
latency and data freshness. Running analytics on the latest data,
however, must not degrade OLTP performance which is typically
bound by strict SLAs for response time and throughput [43]. Fur-
thermore, OLAP is no longer confined to a small set of in-house
users without requirement for guaranteed performance. Businesses
provide OLAP (in addition to OLTP) as a service to large number
of users with SLAs on data-freshness and performance. An exam-
ple is the airline industry [59], where analytics of flight bookings is
offered as a service to travel agents and airline companies.

Efficiently handling both OLTP and OLAP workloads is difficult
because they require different algorithms and data structures. A
common approach for handling such hybrid workloads is to keep
a separate data warehouse for OLAP isolated from the OLTP sys-
tem. Data warehouse systems are optimized for read-only analyt-
ical workloads and are periodically refreshed through a batch job
containing the latest data updates. This provides both good perfor-
mance isolation between the two workloads, and the ability to tune

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035959

each system independently. The downsides, however, are that the
data analyzed is possibly stale and that there is additional overhead
of interfacing with multiple systems [45].

To overcome this problem, several alternatives have been re-
cently introduced which target such hybrid workloads (e.g., SAP
HANA [17], HyPer [28, 40], SQL Server [30], MemSQL [52], Or-
acle [29], etc.). However, a big challenge for these systems is the
performance impact that workloads have on each other. A recent
study by Psaroudakis et al. [47] analyzed cross-workload interfer-
ence in HANA and HyPer and found that the maximum attainable
OLTP throughput, when co-scheduled with a large analytical work-
load, is reduced by at least three and five times respectively.

This paper presents BatchDB, an alternative design of a database
engine architecture, which handles hybrid workloads with guaran-
tees for performance, data freshness, consistency, and elasticity.

To accommodate both OLAP and OLTP, BatchDB primarily re-
lies on replication, trading off space for performance isolation, with
a primary replica dedicated for OLTP workloads and a secondary
replica dedicated for OLAP workloads. This allows for workload-
specific optimizations for every replica and physical isolation of
resources dedicated for each workload.

To efficiently maintain the replica up-to-date without affecting
OLTP and OLAP performance, BatchDB relies on lightweight up-
date extraction and isolated execution of queries and updates at the
OLAP replica. The latter is achieved by having incoming OLAP
queries first queued and then scheduled in batches, one batch-at-a-
time. Execution of each batch of queries is shared and done as part
of a single read-only transaction on the latest version of the data.
Propagated OLTP updates are also first queued and then efficiently
executed in-between two batches of queries. This enables version-
agnostic scan processing at the OLAP replica and logical isolation
between the query processor and update propagation. For added
elasticity of the system, BatchDB uses an efficient way of extract-
ing, propagating and applying updates both within one and across
multiple machines using RDMA over InfiniBand.

All these features help BatchDB achieve performance isolation
for hybrid workloads as required by applications that need guar-
anteed throughput and response times. The experimental results,
based on a hybrid TPC-C and TPC-H workload [11], show that
BatchDB achieves good performance isolation between the hybrid
workloads, having a negligible ten percent overhead on each other’s
performance. Moreover, we show that the replication mechanism
is capable of propagating and applying the updates at the analytical
replica at a rate higher than any TPC-C throughput achieved to date
and can, thus, be integrated with other transactional engines. Fi-
nally, the system has competitive performance for individual OLTP
and OLAP workloads and is superior to existing systems designed
for hybrid workloads in terms of overall throughput.
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In summary the paper makes the following contributions:
• We identify and experimentally show multiple effects of re-

source sharing that cause unbalanced performance degrada-
tion of OLTP and OLAP workloads:

– Explicit resource sharing depends on scheduling poli-
cies of the database engine and can be avoided by sche-
duling OLTP and OLAP requests on dedicated resources.

– Implicit resource sharing (e.g., of memory bandwidth
and CPU caches) that entails the need for having sepa-
rate replicas of OLTP and OLAP workloads

• We propose a method for logical separation of analytical que-
ries and transactional updates using a single snapshot replica,
batch scheduling of queries and updates and efficient algo-
rithms for executing the updates.

• We show experimentally that our method leads to very high
isolation of OLTP and OLAP performance both when repli-
cas are collocated on a single machine and when they are
placed on separate machines.

2. MOTIVATION AND STATE-OF-THE-ART
In this section, we identify the key requirements for engines that
aim to handle hybrid transactional and analytical processing work-
loads (HTAP), and summarize existing systems.

2.1 Design Goals
Performance isolation: Database engines typically have to pro-

vide guarantees for latency and throughput as required by SLAs.
Unpredictable OLTP performance caused by concurrent OLAP que-
ries in hybrid workloads, and vice-versa, can lead to a significant
revenue losses.

Workload-specific optimizations: Database engines should
leverage workload-specific optimizations wherever applicable. They
should use data structures and operate on data formats suitable for
the given workload. Workload-optimized implementations are im-
portant for delivering good and stable performance.

Update propagation & data freshness: Ideally, OLAP queries
should run on the most recent version of data as many critical
business decisions rely on real-time analytics on latest data [45].
Fast update propagation requires using low-latency communication
primitives between the individual system elements and having effi-
cient update mechanisms within the components.

Consistency guarantees: Analytical queries should be executed
with high consistency guarantees, (i.e., snapshot isolation) to en-
sure that queries have a consistent view on the data.

Single system interface: Instead of managing a separate system
for each workload type, having a single interface which supports
both analytical queries and transactions significantly increases the
ease of use of the system.

Elasticity: The system should take advantage of all the resources
provided by modern distributed environments. To achieve this, the
database engine should be able to scale dynamically with an in-
creasing number of machines.

2.2 Overview
The traditional way of analyzing operational data meant running
a separate data warehouse system updated periodically with up-
dates from the main OLTP system through an ETL process. This
approach provided good performance isolation between the OLTP
and OLAP workloads, and allowed for workload-specific optimiza-
tions to be applied in each system. However, the main drawback is
that most of the analysis is then done on stale data, as the update
period can be in the order of hours or days. In today’s connected

fast-paced world, data freshness is critical and there is a high de-
mand for real-time operational analytics [30, 43, 45].

For this reason, many recent research and commercial systems
aim to provide real-time analytics. For instance, SAP HANA [17]
relies on multi-version concurrency control with a main and delta
data-structures where the delta is periodically merged into the main.
Recent work by Goel et al. [21] proposed an architectural design
for a scale-out extension of HANA (SAP HANA SOE) to support
large scale analytics over real-time data. The first version of Hy-
Per [28] relied on single-threaded in-core partitioned database and
used the operating system’s fork system call to provide snapshot
isolation for analytical workloads. The new version uses an MVCC
implementation that offers serializability, fast transaction process-
ing and fast scans [40]. Microsoft’s SQL Server combines two spe-
cialized engines for OLTP (Hekaton in memory tables) and OLAP
(Apollo updateable column-store indices) [30]. Oracle provides
dual-format in-memory option [29] to store a table in columnar for-
mat for analytic operations in addition to the standard row format
for OLTP workloads. It also provides a publish-subscribe mecha-
nism with its Change-Data-Capture [41] and GoldenGate [43] tech-
nologies to stream changes from a primary OLTP database to generic
secondary databases that can be anything from a relational database
to a big-data system. ScyPer [39] extends HyPer to provide scaled-
out analytics on remote replicas by propagating updates either us-
ing a logical or physical redo log. MemSQL [52] also supports hy-
brid OLTP and OLAP workloads providing dynamic code genera-
tion, distributed query processing, and high performance in-memory
data-structures, such as lock-free skip-lists.

There are many other systems which have addressed similar prob-
lems or shared some of our design goals. For instance, Gany-
med [44] and Multimed [51] showed the benefits of using a primary-
secondary replication mechanism for scalability, performance iso-
lation and providing special functionality both across and within
multicore machines. KuaFu [24] analyze concurrent replay of trans-
actions in backup database replicas, and Pacitti et al. [42] studied
how immediate update propagation (without waiting for the com-
mitment of the transaction) can improve data freshness.
HYRISE [22] automatically partitions tables with varying widths
depending on whether certain columns are accessed as part of an
OLTP or an OLAP workload. Several systems have also explored
hybrid storage layouts, and can decide on the fly which layout is
best for the respective queries (e.g., [1, 14]).

The technique of batching requests has been previously used in
several different contexts. When processing transactional work-
loads, systems like Calvin [56] and BOHM [16] have grouped trans-
actions in window based batches to determine a global serial order,
which then helps in orchestrating the transaction-at-a-time execu-
tion to improve performance of distributed transactions and highly
scalable concurrency protocol on multicore machines. For analyti-
cal workloads, systems like HyPer [28] have proposed grouping of
OLAP queries by session so that they read the same snapshot, but
are still executed query-at-a-time. Alternatively, analytical requests
can be batched and executed concurrently as a group using multi-
query optimization. Such an approach was originally proposed by
IBM Blink [48], and later adopted by systems such as CJoin [9],
Crescando [59], DataPath [2], and SharedDB [19].

By using a shared-scan approach and a delta-main data-structure
AIM [7] proposes a system that can run real-time analytics on high
data rates coming from streaming systems, but is specifically tai-
lored for a telecommunication industry use-case.

Other relevant systems are federated database engines, targeting
big data batch and stream processing systems, such as BigDAWG’s
Polystore [15] and the Cyclops’s DBMS+ [34]. Both follow the
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one size does not fit all paradigm, but expose a single user interface
to multiple specialized data processing systems, hiding the com-
plexity in the optimizer.

2.3 Discussion
To discuss the properties of state-of-the-art systems that handle
OLTP and OLAP workloads we separate them into two categories:
systems that operate on a single instance of the data, and systems
that rely on data replication. Examples of the first category of sys-
tems are SAP HANA and HyPer. They provide a single system
interface, and enable users to analyze the latest (or any) version of
the data. This, however, comes at a cost. It limits opportunities
for workload-specific optimizations, it results in synchronization
penalties and trade-off between data freshness and performance on
both sides of the workload spectrum, and often results in interfer-
ence for the usage of hardware resources. Consequently, there is
a significant performance interaction. The extensive analysis by
Psaroudakis et al. [47] demonstrated the OLAP workloads can sig-
nificantly reduce the performance of the OLTP workload. They
used the hybrid CH-benCHmark [11] to test such cross-workload
performance effects on both HyPer and SAP HANA. The study
concluded that the interference is due to resource sharing, as well
as synchronization overhead when querying latest data. Finally, we
must note that despite operating on a single instance of the data,
these systems still rely on distinction between data representations
and certain amount of replication. The latter one is implicit through
a copy on write mechanism (HyPer), or through keeping the data
in a main and a delta containing the most recent updates still not
merged with the main (SAP HANA). The latter one can be per-
ceived as a partial replication, where the updates are merged with
the main in a batch on certain time intervals.

The second category of systems follows the more classical ap-
proach of data warehousing, where data is replicated with separate
replicas being used for different workloads. Example systems are
ScyPer [39], SQL Server’s column-store index, Oracle’s Golden-
Gate [43] and in-memory dual format [29], and the scale-out exten-
sion of SAP HANA [21]. The common approach for maintaining
an OLAP-specific replica up-to-date with OLTP updates in these
systems (in particular employed by SAP HANA, Oracle and SQL
Server) is to have updates staged in a separate delta data-structure
with the query processor accessing both the delta and main OLAP
replica for scan processing. The delta is then periodically merged
into the main data-structure. The main challenge in this case, how-
ever, is to maintain the OLAP replica up-to-date under high OLTP
and OLAP load without sacrificing performance. For instance, the
SQL Server recommends storing only cold data in the column-
store index to avoid the overheads of applying updates from hot
data [53]. The OLAP query execution then automatically scans the
column-store index for cold data and the primary OLTP store for
hot data. ScyPer’s authors note that by executing a physical redo
log of update-containing transactions, the updates are applied two
times faster than in the primary replica, but their performance is
still significantly affected by the OLAP query execution. The en-
terprise version of MemSQL supports replication, but log recovery
at the secondary replica is single-threaded and is not be able to keep
up under high OLTP load. Furthermore, MemSQL only provides
read-committed isolation level. Finally, Oracle states that their ap-
proach leads to single-digit percentage performance overhead to
the source (primary OLTP) database [43], but it is unclear whether
and by how much the applying of updates affects the execution of
analytical workloads.

Hence, we conclude that handling hybrid workloads while satis-
fying the design goals (described in §2.1) is still an open problem.
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Figure 1: System architecture

3. SYSTEM OVERVIEW
This section provides an overview of BatchDB’s key principles,
and how they address our design goals and the shortcomings of
existing systems. It also includes a discussion on the assumptions
and trade-offs we make.

3.1 BatchDB components
Figure 1 shows an overview of BatchDB’s architecture. Similar to
the second category of systems supporting hybrid workloads de-
scribed in Section 2.3, BatchDB’s architecture is based on repli-
cation. In particular, it uses a primary-secondary type of replica-
tion. The primary replica is OLTP-specific and handles all update-
containing transactions (Figure 1 left), while the secondary replica
is OLAP-specific and executes all analytical queries (Figure 1 right).
This allows for each replica to be optimized for the particular type
of workload it is responsible for (e.g., the OLTP and OLAP compo-
nents have separate execution engines where the OLTP is designed
for pre-compiled stored procedures, while the OLAP targets scan-
heavy ad-hoc queries). In BatchDB, the replicas can be placed
either on the same shared-memory machine (on different NUMA
nodes) or across multiple machines.

Each replica has a dedicated set of resources (worker threads
on separate CPU sockets or separate machines) and a dispatcher
that schedules the corresponding requests. The OLTP dispatcher
is responsible for assigning OLTP requests to worker threads and
logging the successful transactions. Worker threads also export a
physical log of updates containing information on the snapshot ver-
sion for each affected tuple to be used for propagating the updates
to the analytical replica. We provide more details for the imple-
mentation of the OLTP component in Section 4.

The OLAP dispatcher schedules OLAP queries and makes sure
that the OLAP replica operates on one-batch-at-a-time processing
with data kept in a single-snapshot-replica. This is important for
efficient application of the propagated updates from the primary
replica, without negatively affecting the performance of the OLAP
queries. In this case, the physical storage is version-agnostic and
maintains only a single version of the data at-a-time, removing
the overhead of dealing with multiple snapshots for scan process-
ing. Furthermore, processing a single batch-at-a-time eliminates
the overhead of logical contention and synchronization with the
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transactional component, and when applying the updates. More
details for the analytical component are presented in Section 5.

3.2 Addressing the design goals
Performance isolation: BatchDB partially addresses the first

design goal by relying on replication and using separate replicas
for the different types of workloads. By design it allows for phys-
ical isolation of the allocated hardware resources: either by plac-
ing the replicas on different machines, or when executed on the
same machine, with replicas isolated on separate NUMA nodes. In
the evaluation section we show the impact of implicit sharing of
resources on performance isolation. The second key principle ad-
dressing the performance isolation objective is removing the logical
contention between the two components. This is achieved by the
batch-based processing and applying of the updates done by the
OLAP dispatcher.

Data freshness: To support a high level of data freshness, OLTP
worker threads constantly push updates to the OLAP replica. Up-
dates are pushed at the end of the execution of a batch of OLTP
transactions in two cases: 1. if the OLAP dispatcher has asked for
the latest snapshot version, 2. if the latest push of updates happened
longer than a certain (configurable) period, which in our case is set
to 200ms. Therefore the amount of time it takes for a committed
transaction’s updates to be present at the OLAP replica depends
mostly on the duration of a batch of OLTP transactions, which in
our case is in the order of 10s of milliseconds. This is generally
less than the execution time of analytical queries, so the amount of
data freshness, as perceived by users, will be determined only by
the response time of the OLAP queries.

Workload-specific optimizations: By design, BatchDB’s work-
load specific replicas can apply any applicable optimization tech-
nique for the corresponding workload mix they serve. In our case,
the design and implementation of both the OLAP and OLTP com-
ponents is based on ideas and techniques that have been shown to
improve the performance of the particular workload at hand.

Consistency guarantees: BatchDB provides snapshot isolation
for both OLTP and OLAP. The OLTP replica uses MVCC to pro-
cess transactional requests, while the OLAP replica uses a single
snapshot version at a time approach to answer analytical queries.
We discuss some of the trade-offs BatchDB makes in terms of
transactional semantics in the following subsection.

Interfaces: BatchDB exposes a single system image and inter-
face to users of both workloads. There is no explicit requirement
for users to distinguish requests for the two replicas. The secondary
OLAP replicas can be seen as indexes which operate on a single
snapshot version, one batch of read-only queries at a time.

Elasticity: BatchDB can scale by deploying more replicas as
the number of machines increases. In addition to different replica
types, multiple instances of the same component can be created in
order to distribute the load evenly across the whole system. The
high bandwidth of modern networks in combination with RDMA
primitives makes it possible to distribute updates to a large number
of replicas. The design principles we use, can also be applied to
provide specialized replicas for other workload types (e.g., offline
batch analytics for long running queries, graph processing, etc.).

3.3 Trade-offs
Individual query latency: One trade-off in BatchDB is the in-

dividual query latency for OLAP workloads. Namely, we impose
the requirement that all concurrent OLAP queries have to be co-
scheduled together to isolate them from execution of OLTP up-
dates. The effect of this is that query latency depends on the latency
of other concurrent OLAP queries. We argue that this is acceptable

in practice as predictable performance for all queries is more im-
portant than performance of individual queries. This is particularly
true for a system offering online analytics on real-time data as it is
typically assumed (and often required due to SLAs) that all queries
are executed within few seconds. If a user wishes to run a query
that would take longer to execute, for instance minutes or hours,
then this query can be handled in a different way as an offline non-
real-time query. We discuss this in detail in Section 7.

Transaction semantics: While our system provides snapshot
isolation guarantees for OLAP queries it does not provide full trans-
actional flexibility. For instance, the version of the data on which
queries are processed is decided by the system when the query
(along with other queries in its batch) starts executing. To iso-
late the execution of OLAP queries and OLTP updates, the OLAP
replica is updated at a coarser granularity and users can not choose
the exact version of data to run their query on. Hence, interactive
sessions with long running read only transactions where users sub-
mit queries one after the other are not possible in our current imple-
mentation. In Section 7 we discuss possible extensions to handle
this and other types of workloads.

4. TRANSACTIONAL COMPONENT
(OLTP REPLICA)

The transactional (OLTP) component, as depicted on the left-hand
side of Figure 1, contains the primary replica of the database engine
whose purpose is to handle both update-containing transactions and
short latency-sensitive read-only requests. Apart from having to
prepare updates to be propagated to the OLAP replica, the design
decisions for implementing the OLTP replica can be oblivious to
the requirements of OLAP workloads. Therefore, no compromise
needs to be made when handling OLTP workloads and any OLTP-
specific optimizations are applicable.

We based our implementation of BatchDB’s OLTP component
on Hekaton [13], and use multi-version concurrency control [6]
and lock-free indexing data-structures, as opposed to partitioning
to achieve scalability in multi-core systems. This is unlike the ap-
proaches taken by H-Store [26], VoltDB [54], or HyPer [28], which
are more suitable for partitionable workloads.
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Figure 2: OLTP Record Storage Format and Index Layout
Example

Storage layout and indexes: Figure 2 depicts the storage lay-
out and indexing data-structures for a sample relation. Primarily,
we use a row-oriented storage as it is most efficient for the point
lookups and updates, which are integral to transaction processing.
Similar to Hekaton, we use a hash-based and a tree-based index
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based on the lock-free Bw-Tree [32]. We use a simplified version
of the Bw-Tree that relies on atomic multi-word compare-and-swap
updates [37]. Furthermore, the physical records contain a double-
linked list per index to facilitate easier traversal into the indexes.

Transaction execution and concurrency control: For efficient
handling of OLTP requests the system supports natively compiled
stored procedures with clients sending their requests in the form
of stored procedure calls. To execute the stored procedures, the
OLTP component owns a dedicated set of worker threads. The
worker threads are collocated on a single NUMA node to avoid
high synchronization overheads over the interconnect for sensitive
parts of the architecture, such as epoch management, garbage col-
lection, memory allocation, etc. The current implementation pro-
vides snapshot isolation guarantees for transactions using a multi-
version concurrency control. Scaling this component over multiple
NUMA nodes and across multiple machines is part of future work.

Scheduling: The responsibility for allocation of OLTP requests
(stored procedure calls) to worker threads is assigned to the OLTP
dispatcher that, similar to the OLAP dispatcher, schedules opera-
tions in batches working on one batch at-a-time. As depicted in
Figure 1, incoming OLTP requests are first queued up in the OLTP
queue while the system is busy executing the current batch of OLTP
requests. When the current batch is done, the OLTP dispatcher de-
queues all requests from the OLTP queue and enqueues them to the
OLTP worker threads in a round robin fashion. This trades off indi-
vidual query latency to obtain benefits that arise in evaluating many
requests as a batch. For instance in our case, the logging of updates
to durable storage, the epoch management for the lock-free data-
structure, the garbage collection and the propagation of the updates
to the OLAP replica all benefit from such batch-based execution.
In such mode, threads can combine multiple operations in the same
epoch and amortize the cost of modifying contested atomic coun-
ters. We have not yet explored using the OLTP request batching for
optimizing the performance of the concurrency protocol, as pro-
posed by BOHM [16].

Logging: For durability the OLTP dispatcher logs the success-
ful update transactions to a durable storage medium before the re-
sponses are sent to the clients. To minimize the effect of logging on
performance, we do command logging (similarly to VoltDB [38]).
Note, that as we are using snapshot isolation the information on
the read and committed snapshot versions needs to be also logged
for correct recovery. Furthermore, logging is performed on a batch
basis (as group-commit [12]) to hide the I/O latency for multiple
OLTP requests. Note that as the OLAP replica is not backed up
by a durable medium, in case of failures it needs to be recovered
by reading a snapshot and catching up with new updates from the
primary replica. This has been studied in several settings [25, 27].

Update propagation: To keep the secondary replica consistent
and up-to-date, the OLTP component also exports a log of updates

separate from the durable log. Unlike the durable log that con-
tains logical updates, the propagated updates contain the physical
updates to individual records. This enables efficient application of
the updates on the secondary replica. To avoid expensive synchro-
nization among OLTP worker threads, each thread prepares its own
set of updates to be propagated. An example set of updates from a
single thread is depicted in Figure 3. This example contains eight
propagated updates from three committed transactions. Updates
from a single thread may be interleaved with updates from other
threads during the propagation process. For instance, in this exam-
ple the updates from a transaction with version ID 2 are part of the
update set of a different thread. Each update contains:

1. The Type of the update can be either a newly inserted tuple,
an update to an existing tuple or a delete of an existing tuple;

2. The RowID integer which uniquely specifies the tuple that
corresponds to this update. The RowID is equivalent to the
primary key of the relation and is used to efficiently locate
the corresponding tuple at the secondary replica;

3. The Offset and Size in bytes which are used to update exist-
ing tuples on finer sub-tuple granularity;

4. The Data which contains either the data of the newly inserted
tuple or the payload of the update to an existing record.

As our results also show, propagating the updates as described
above adds small performance overhead on this part of the system.

5. ANALYTICAL COMPONENT
(OLAP REPLICA)

The analytical component is depicted on the right-hand side of Fig-
ure 1, and contains the secondary replica of the database engine.

Query scheduling: In order to avoid synchronization and per-
formance interaction between running the OLAP queries and ap-
plying the OLTP updates, the OLAP dispatcher executes queries in
batches. A batch is executed as a read-only transaction on the latest
snapshot version. Before executing the next batch of queries, the
dispatcher retrieves from the OLTP component the latest committed
snapshot version, and applies the propagated updates on its replica
up-to that version. Furthermore, as only one batch of queries is
executed at-a-time, the OLAP engine does not need to store more
than a single version of the data, i.e., can be version oblivious.

The batch scheduling of BatchDB is similar to the one used by
Crescando [59] and SharedDB [19]. The technique of BatchDB dif-
fers from these systems as it batches all concurrent OLAP queries
in the system to isolate the OLAP query processing from the up-
dates propagated by the primary OLTP replica. The first version of
HyPer also grouped the OLAP queries by session, and made sure
that all queries in a session operated on the same snapshot version.

Query execution: Since the query scheduler executes queries in
batches, even though it is not necessary, we use a query process-
ing engine that also takes an advantage of shared execution. Our
OLAP component uses ideas presented by prior work on shared
scans [49, 59, 61] (to share memory bandwidth across scans and
query predicate evaluation); more complex query processing [2, 8,
19,36] (to share execution of join operations for more efficient uti-
lization of CPU and DRAM bandwidth); and scheduling optimiza-
tions [20]. Prior experiments on this component [36] show that, for
large workloads, it can provide higher throughput than state-of-the-
art commercial engines in analytical query processing.

Update propagation: Finally, to enable fast application of up-
dates, all tuples of replicated tables are annotated with a RowID
integer attribute in both replicas. The RowID is essentially a pri-
mary key attribute hidden from the user. As described earlier, all
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Figure 4: Process of applying propagated updates from OLTP replica into OLAP replica

propagated updates from the OLTP replica contain the RowID at-
tribute which is used at the OLAP replica to uniquely identify the
tuples referred by the updates. Furthermore, as show in Figure 1,
the data in the OLAP replica is horizontally (soft) partitioned based
on a hash value of the RowID attribute. This enables both efficient
(NUMA-local) scan processing and fast application of OLTP up-
dates on modern multi-core machines. Similar soft based partition-
ing has also been used by numerous other systems (e.g., [31, 46]).

To facilitate efficient matching of OLTP updates and tuple loca-
tions, the OLAP component maintains a hash index of the data on
the RowID attribute. The process of applying the propagated up-
dates using the RowID and the hash indexes consists of three steps
which are illustrated in Figure 41:

• In step 1, update sets from multiple OLTP threads are or-
dered by the snapshot version ID (VID). This step is the
fastest as it only orders the update pointers using a scan with
complexity linear in the number of new snapshot versions.

• Step 2 is executed when the OLAP dispatcher obtains the lat-
est committed snapshot version ID (in this example is 5) to
be used for the current batch of queries. Thereafter, the up-
dates corresponding to snapshot versions up to and including
the VID are propagated to the corresponding partitions based
on a hash value of the RowID attribute.

• In step 3, updates for each partition are applied using the
hash index on RowID to find the location of tuples for oper-
ations that either update or delete a tuple. When a tuple is
deleted, the slot for that tuple is marked as empty, as a sig-
nal for the scan processor to ignore the tuple at that location.
In case of inserts, the tuple is inserted into the next free slot
of the partition (possibly at a location where a tuple was re-
cently deleted) and the hash index is populated accordingly.
In case of updates, tuples are updated in place at the granu-
larity of single attributes to avoid rewriting the entire tuple.
The attribute to be modified is identified using the offset and
size fields depicted in Figure 3.

All three steps are easily parallelizable. The most time consum-
ing step is step 3, as it contains multiple random accesses. Tech-
1Note that the OLTP Thread 1 Updates in Figure 4 are identical to
the ones presented in Figure 3

nically, this step resembles a hash join with the hash index used
as a hash table to join the updates with the existing data. In gen-
eral, there has been a significant work on speeding up joins with
state-of-the-art algorithms reaching hundreds of million of tuples
per second on modern multi-cores [3]. To put these numbers into
perspective the highest reported performance for the industry stan-
dard OLTP benchmark (TPC-C) would correspond to about tens
of millions updated tuples per second. Therefore, we expect that
this approach of propagating updates from an OLTP to an OLAP
replica can satisfy the needs of most systems. Our algorithm opti-
mizes for both main-memory bandwidth and latency. Hash buckets
from the hash index are stored in a single cacheline and accessed
using a grouped software prefetching technique [10] to minimize
high random main-memory access latencies.

We also experimented with propagating updates with an array
approach, where the RowID is directly used as an offset in the stor-
age of the OLAP replica. However, we found that it did not bring
significant performance gains compared to an optimized hash in-
dex approach, while on the other side requires coordination among
OLTP worker threads in the use and reuse of RowID integers.

Storage layout and data transformation: The current imple-
mentation of the OLAP component uses an uncompressed row-
oriented storage (as depicted in Figure 4), similar as to the OLTP
replica. Note, however, that this is not a design requirement (i.e.,
we do not rely on physical replication) and as part of future work
we plan to optimize it using a column-store format, which has been
shown to be more efficient for analytical workloads, and can fur-
ther benefit from compression, reduced I/O and memory costs. We
do, however, evaluate the performance of our update propagation
method using a micro-benchmark on a column-oriented format in
Section 8.3.

6. NETWORK COMMUNICATION
BatchDB allows the OLAP replica to be either co-located on the
same physical machine as the primary replica, or to reside on a
different node. In the latter setup, the system makes use of modern
low-latency networks to efficiently propagate the updates.

Remote Direct Memory Access (RDMA) [23] is used to improve
the latency of small messages and reduce the CPU overhead for
large data transfers by avoiding intermediate copy operations in-
side the network stack. RDMA has been used for several database
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systems [33, 50] and the ideas we use are based on the platforms
developed for running query-at-a-time joins at large scales [4, 5]

RDMA offers one-sided and two-sided operations. When using
one-sided read or write operations, the initiator of the request di-
rectly manipulates a section of memory which has previously been
exposed by the remote machine. The CPU on the target machine is
not notified nor involved in the data transfer. Two-sided operations
on the other hand represent traditional message passing semantics.
The receiver has to allocate several receive buffers and is notified
when a new message has been placed in any of these locations. A
downside of RDMA is that the application is burdened with extra
complexity of network buffer management [18].

In BatchDB, each machine registers several RDMA receive
buffers with the network card. Small messages of less than 1024
KB are directly written to these buffers using two-sided RDMA
operations. Larger messages cannot be transmitted directly, and
require a handshake operation. During the handshake, the sender
transmits the required buffer size to the receiver, which in turn al-
locates a new buffer and registers it with the network card. The
receiver responds with the buffer address and the necessary access
credentials. After this exchange, the sender can initiate the data
transfer using a one-sided RDMA write operation. Once the trans-
fer is complete, the receiver is notified by the sender. To reduce
the overhead of memory allocation and registration, large RDMA-
buffers are pre-allocated and cached in a buffer pool.

In addition to a low latency, modern networks also provide high
bandwidth, which is important for data-intensive applications. The
communication mechanisms mentioned above allow for optimal
use of the network bandwidth for both small and large messages.
Propagating updates from the primary replica to one secondary
copy does not fully saturate the throughput of a 4xFDR InfiniBand
network. Not being limited by the network bandwidth enables the
primary node to simultaneously transmit updates to multiple sec-
ondary copies, thus making the system elastic and scalable.

7. BEYOND OLTP AND OLAP
The system we have described so far is designed to run concurrent
OLTP and OLAP workloads providing high performance isolation,
and data freshness as well as support for many workload-specific
optimizations. To provide these features, however, we make several
trade-offs. One of these trade-offs is that due to the batched way of
scheduling queries and updates in the OLAP replica, the latencies
of all queries is determined by the slowest query. For this reason,
the system is designed to process OLAP queries expected to be
answered within a predictable time-frame of several seconds.

If a user would like to run a long-running (offline) analytical
query that takes minutes or hours this would have a devastating
effect on the latency of other concurrent queries. Here we outline a
few ways of how we could address such and other types of queries.

Multi-version storage in secondary replica: With this approach
the OLAP replica essentially replicates the primary OLTP replica
containing fine-grained versions, but without storing the indexes
that are necessary for the point-based OLTP workloads. Compared
to a single replica, this still provides physical isolation of resources,
and possibility to have workload-specific optimizations. Further-
more, concurrent queries can operate on any version of the data,
hence long running and short running queries can be mixed without
effect on latency. However, the scan processing must deal with the
snapshot version information for each tuple and query, plus stale
versions have to be garbage collected, leading to increased overall
overhead to query processing. Thus, we do not prefer this approach
and would recommend one of the options explained below.

Separate replica for different types of workloads: In this ap-
proach a separate replica will be used for different types of work-
loads and the same principles (single-snapshot replication and batch
scheduling of queries and updates) will be used for each replica.
Each replica will also be specialized for its specific type of work-
loads, including offline analytics, graph processing, machine learn-
ing, etc. This goes in a similar direction to the approach of feder-
ated databases that is currently gaining traction with systems like
BigDAWG’s Polystore [15] or the Cyclops’s DBMS+ [34] that
provide a single interface to multiple systems specialized for dif-
ferent types of data processing. The disadvantage is that it requires
more hardware resources (e.g., more main-memory and CPUs) to
keep the higher number of replicas.

Store fixed amount of versions in secondary replica: Another
approach is to make a compromise between the above two options
and maintain multiple versions at the secondary replica but with a
much coarser granularity than at the primary OLTP replica. For
instance, analytical queries could be divided into two categories:
latency-sensitive online analytical queries and latency-insensitive
offline analytical queries. The analytical component would then al-
low two concurrent batches of queries, one containing the latency-
sensitive ones and the other containing the latency-insensitive
queries. Compared to the first approach, this would induce less
overhead on applying OLTP updates as only two versions will be
maintained and processed by the scan. Compared to the second
approach, this will not use as many hardware resources.

8. EVALUATION
In this section, we provide an experimental analysis of the perfor-
mance and behaviour of BatchDB. We first start with an experiment
using a stand alone OLTP benchmark to evaluate our OLTP com-
ponent and compare it to the state-of-the-art. We then measure the
cost of applying the OLTP updates on the secondary OLAP replica.
The main experiment uses a hybrid OLTP and OLAP workload to
evaluate BatchDB’s performance and predictability, and quantify
the amount of cross-workload performance interaction. Using the
same benchmark we also evaluate performance isolation for two
related systems that support hybrid workloads. Finally, we investi-
gate the performance impact of implicit sharing of resources.

8.1 Experimental setup
Infrastructure: Our testbed is a cluster of machines each with

4 Intel Xeon E5-4650 v2 (IvyBridge-EP) processors. Each pro-
cessor has 10 physical cores (20 logical cores) running at 2.4 GHz
with 25 MB shared L3 cache and 128 GB of DDR3 RAM run-
ning at 1833 MHz. The system is running on a Linux kernel with
version 3.16.0-4. The machines are interconnected with a 4xFDR
InfiniBand interconnect. In the experiments, BatchDB runs on one
or two machines, and the client workload is generated on separate
machines that communicate via a 1 Gbit Ethernet network.

Workload: We evaluate our system under a hybrid OLTP and
OLAP workload using the CH-benCHmark [11]. The benchmark
is a mix of standard OLTP and OLAP benchmarks, namely TPC-C
and TPC-H. In particular, the OLTP part is an unmodified version
of the TPC-C benchmark, while the OLAP part contains a set of
analytical queries inspired by TPC-H. The latter are modified to
match the TPC-C schema, plus a few missing TPC-H relations.

We modified the analytical queries of the CH-benCHmark for
several reasons: First, as our OLAP query processor benefits from
sharing opportunities, it is important that we do not have a work-
load with a large set of equivalent queries or query predicates.
However, we observed that the original set of query predicates does
not provide sufficient diversity even after randomizing the parame-
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Figure 5: TPC-C Performance

ters according to the TPC-H benchmark. One reason for this is that
unlike in the TPC-H dataset where most attributes have a broad
range of values, many attributes in the TPC-C dataset, and in par-
ticular the date fields, cover a narrow scope. Thus, we modified
the queries by randomizing the predicate values and adding query
predicates where applicable so as to not unduly benefit the shared
execution approach. Second, our current OLAP query processor
does not provide full SQL, and only supports scan, join and aggre-
gate queries. Therefore, we modified some of the queries to be able
to accommodate them. The final set of queries we used, including
the randomized query predicates, is shown in Appendix 1. This set
of queries is a good approximation for OLAP queries, as they con-
sist of heavy full table scans and expensive join operations. Since
the batched query scheduling logically isolates the OLAP query
processor from the OLTP component and the update propagation
mechanism, having support for full SQL and the original TPC-H
queries would not have an impact on our results and conclusions.

8.2 OLTP Performance
In the first experiment we test standalone OLTP performance with-
out propagating the updates to a secondary replica. We allocate
20 OLTP worker threads running on 10 physical cores (20 logical
cores). We measure throughput in terms of transactions executed
per second and transaction latency in terms of milliseconds, while
we vary the number of warehouses (range of 5 to 200) and number
of clients (up to 2000). In TPC-C the number of warehouses affects
the database size (one warehouse contains about 70MB of data and
500 thousand tuples). The number of warehouses also indirectly
impacts the amount of achievable concurrency in the system, as
small number of warehouses will lead to higher contention within
transactions of concurrent clients.

The results of this experiment are shown in Figure 5. The through-
put results (Figure 5a) show that our system is able to achieve a
maximum of 110 thousand TPC-C transactions (or around 3 mil-
lion new order transactions per minute) when running with 200
warehouses and 2000 clients. While this is not the fastest perfor-
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Figure 6: Update Propagation Power at OLAP Replica

mance reported for TPC-C, it is on par with related systems on
comparable hardware. For instance, Silo [58] achieves around 22
thousand transactions per second per core, while BatchDB achieves
11 thousand. We would like to note, however, that Silo’s imple-
mentation assigns a worker thread per warehouse, and hence limits
the number of warehouses to the machine core count. As a re-
sult, it only processes data of up to 32 warehouses. Other recent
systems, like HyPer [40] or TicToc [60] are able to achieve signif-
icantly higher throughput. HyPer achieves a throughput of about
100 thousand transactions per second in a single thread (700 thou-
sand on 20 threads), however it relies on easily partitionable work-
loads. TicToc achieves a performance of about 4 million trans-
actions per second on 40 threads, however it uses a subset of the
TPC-C benchmark that relies on hash indexes exclusively.

The results depicted in Figure 5b show the impact of batching
queries on transaction latencies. We note that at the point when
maximum throughput is reached, the 99th percentile is less than
30ms, which is well below the 5 second limit for 90th percentile as
per the TPC-C specification.

8.3 Update Propagation
The next experiment evaluates the efficiency of BatchDB’s up-

date propagation mechanism. In this setup, we enable replication
and have the OLTP component propagate the updates to the OLAP
component. In general, updates are pushed every 200ms, or when
the OLAP component queries the OLTP component for the latest
snapshot version. Updates are propagated only for relations that are
used in the analytical workload, i.e., Stock, Customer, Order and
Orderline. Together they account for a majority (around 85%) of
all updated tuples. For this experiment we measure CPU time spent
applying the OLTP updates at the OLAP replica (tupd), the total
number of update tuples (#Tup), and the total number of transac-
tions committed (#Txn) during the experiment. #Tup is the total
number of tuples that are either inserted, modified or deleted during
the experiment. Using this we derive the update propagation power
in terms of updated tuples per second (eq. 1) and transactions per
second (eq. 2). The update propagation power denotes the aver-
age update rate achieved throughout the experiment, providing an
estimate on the overhead of keeping the OLAP replica up-to-date.

Ptup =
#Tup

tupd
(1)

Ptxn =
#Txn

tupd
(2)

The results are shown in Figure 6, where we increase the num-
ber of cores allocated to the OLAP replica and measure its update
propagation power when varying two factors:
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Table 1: CPU Time Spent per Step and Relation for Update
Propagation

Relations (Stock, Cust.,
Order, OrderLine)

S C O OL Total
% of updated tuples 31 6 3 27 67
% of inserted tuples 0 0 3 30 33

Total 31 6 6 57 100
% of CPU time on S1 2 2 2 2 8

applying whole S2 7 2 2 10 21
records updates S3 40 9 2 20 71

Total 49 13 6 32 100
% of CPU time on S1 3 3 3 3 12

applying field S2 11 5 3 16 35
specific updates S3 9 11 2 31 53

Total 23 19 8 50 100

1. Propagating field-specific or whole record updates,

2. Using a row- or column-oriented storage format.

First, we compare the update propagation power to the perfor-
mance at which the OLTP component operates. Looking at the
case when the OLAP replica uses the same amount of resources as
the OLTP replica (10 cores), we can see that the update propagation
power is around 2 million transactions per second, while the OLTP
component processes about 110 thousand transactions per second.
Thus, updates at the secondary replica are applied 20 times faster
than they are generated at the primary replica hinting at the negli-
gible overhead it has on the OLAP performance.

Second, we note that since the OLAP data is partitioned by the
row ID attribute, the update propagation speed improves as we in-
crease the amount of allocated resources to the secondary replica.

Third, we can observe that using field-specific updates does not
result in any significant performance degradation when using a col-
umn oriented storage. However, when updating whole tuples its
performance decreases by more than two fold. This is to be ex-
pected, as updating whole records in a column-store results in more
random DRAM accesses.

Finally, we note that the current implementation with 30 cores
is able to sustain an update rate of about 4 million transactions per
second (or 250 million transactions per minute). For reference this
is more than the best reported TPC-C results, confirming that this
approach is applicable to other systems.

We also investigate the CPU time spent applying the updates for
each step and per relation for a row-store format. The results of this
experiment are shown in Table 1. The update tuple distribution per
relation is shown in the first two rows (% of updated and % of in-
serted tuples). The table only shows the relations which are used in
the analytical workload and are modified by the TPC-C benchmark.
These numbers highlight the difference on how the two approaches
apply the updates to existing tuples. In the first approach where up-
dates are applied to full records, most of the CPU time is spent up-
dating the Stock relation (row 7), even though most of the updated
tuples belong to the Orderline relation (row 3). The reason for this
is that Stock records are very wide (319 bytes), making an update
to an existing record expensive. In the second approach, when us-
ing field-specific updates to update only the changed attributes, the
updates to Stock tuples take significantly less CPU Time (last row),
which in turn improves performance (recall Figure 6). Table 1 also
shows that step 1 from the update propagation algorithm described
in Section 4 is only a small fraction of the total CPU time spent, and
that the applying of updates in step 3 is the most expensive part.

8.4 Hybrid Workload Performance
In the following experiment we test our system with a hybrid work-
load based on the CH-benCHmark and measure the impact that the
OLTP and OLAP workloads have on each others’ performance. We
use an initial dataset of 100 warehouses for all measurements. Each
run is 2 minutes long, where the first 30 and last 10 seconds are
warmup and cooldown periods. We vary both the transactional and
analytical clients from 0 to 2000 and measure: throughput; 50th,
90th and 99th response time percentiles; and CPU utilization.

The results are shown in Figure 7, where the top two rows show
the impact that the OLTP workload has on the OLAP throughput
(Figure 7a) and latencies (Figure 7b), and the bottom two rows
show the CPU utilization (Figure 7c) and how much the OLAP
workload affects the performance of the OLTP throughput (Fig-
ure 7d), and response times (Figure 7e).

On a high level, the results demonstrate that BatchDB achieves
good performance isolation for both workloads, which leads to pre-
dictable performance. The throughput degradation reaches up to
10% when the two replicas are distributed across two machines,
and up to 20% when they are co-located on the same machine. The
distributed case also has a smaller impact on the 99th response time
percentiles for both workloads.

We now analyze the graphs in more detail. The OLAP through-
put is shown in Figure 7a. The left-most plot, titled Local (NUMA)
Replicas, shows a significant drop in OLAP throughput as the OLTP
load increases. This is a result of the database size increasing dur-
ing the execution of the benchmark. Running the TPC-C workload
on the OLTP replica at a rate of 110 thousand transactions per sec-
ond (about 3 million new orders per minute) for 2 minutes results
in an increase of the dataset size for almost 200 warehouses of new
orders and orderlines (or triple the initial size). This coincides with
the registered 50% drop on average throughput.

To isolate the effects of increased dataset size, we modified the
TPC-C benchmark so that the New-Order transaction also deletes
old orders and orderlines to keep the database size constant. The
results of this experiment are presented in the plots on the right
side, which show a much lower overhead of up to 10% and 20%
depending on whether the OLAP replica runs on the same machine
(separate NUMA nodes) or on a different machine.

The increase in analytical throughput at 100 analytical clients
under OLTP load happens due to an artifact that comes from shar-
ing of query execution in the OLAP replica. In particular, when
the OLAP replica is underloaded (i.e., when the processing time of
a batch is sublinear to the number of queries in the batch), slow-
ing down the OLAP query scheduler (due to the OLTP workload)
causes queries to wait less in the OLAP query queue, which im-
proves overall performance. This effect goes away when the OLAP
replica operates at maximum throughput.

The CPU utilization shown in Figure 7c demonstrates two im-
portant aspects of BatchDB. First, it shows the clear separation of
resources dedicated to each component (1 socket to the OLTP and
3 sockets to the OLAP component). Second, it demonstrates the ef-
fect of shared query execution, which was used in our OLAP com-
ponent as even though the CPU of the OLAP component is already
saturated for 1 client, throughput keeps increasing as the number of
clients goes up to 1000 clients. Note that the main design principles
of BatchDB, do not depend on shared query execution within the
OLAP component to achieve high performance isolation.

Figure 7b shows the impact of the OLTP workload on OLAP
response times. The results indicate that response times remain
predictable, as the 99th percentile is increased by at most 50%.

The impact of OLAP on OLTP performance is shown in Fig-
ure 7d (throughput) and Figure 7e (response time). For reference,
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Figure 7: BatchDB Hybrid CH (OLTP + OLAP) Benchmark Performance for 100 Warehouses

we also include the numbers for a system setup where updates are
not propagated to an OLAP replica (NoRep). We observe that the
maximum throughput is degraded by at most 10% when propagat-
ing the updates. Running the OLAP workload on the same machine
as the OLTP workload incurrs an insignificant additional overhead
of maximum 7%, which is not even present in the case where OLAP
runs on a separate machine. This shows that our approach of repli-
cating both within a machine and across machines allows us to

achieve high isolation. Looking at the response time graphs, at
maximum performance the increase in the 99th percentile is due to
the periodic pushing of propagated updates. In the current imple-
mentation of BatchDB the updates are pushed either every 200ms
or when the OLAP dispatcher schedules a new batch of queries,
whichever comes first. Nevertheless, the maximum 99th percentile
is still under 40ms and is well bellow the 5s limit of TPC-C.
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Figure 8: Hybrid Workload Interaction for SAP HANA, MemSQL and BatchDB on a Cloud Machine.

Another important take away from these results is the smooth-
ing effect that the batch scheduling has on query latency, which is
also part of the trade-off we make to achieve the performance iso-
lation. In our case, all queries take the same amount to execute,
leading to the 50th, 90th and 99th query latency percentiles be al-
most identical. As discussed before, we believe this is prefered by
users expecting predictable response times based on certain SLAs.

8.5 Comparison to Related Systems
Next we provide experimental comparison with related systems
that handle hybrid workloads. We ran the CH-benCHmark on two
state-of-the-art commercial engines that support hybrid transact-
ional and analytical workloads – SAP HANA and the community
edition of MemSQL. We ran the benchmark for all three systems
on a virtual machine on the Amazon cloud (as it is not possible to
run SAP HANA on our local machine).

As a benchmark driver we took the code from Psaroudakis et
al. [47] and modified the OLAP part to use the same set of queries
we used for evaluating BatchDB. Note that in the case of HANA,
we essentially corroborated the results published by Psaroudakis et
al. [47], albeit for a modified workload and on different hardware.
The Amazon cloud machine we used is an ’r3.8xlarge’ contain-
ing two Xeon E5-2670 v2 processores with 32 vCPUs in total, and
244 GBs of main memory. The clients were run on a separate vir-
tual machine in the same availability zone.

For MemSQL we used a separate benchmark driver for the OLTP
part based on tpcc-mysql [57] (the OLTP part of the CH-benCHmark

is identical to TPC-C), which was modified not to use prepared
statements (as they are not supported by MemSQL). Even though
MemSQL is designed for distributed query processing, we primar-
ily focused on how well it can isolate the performance of the OLTP
and OLAP workloads on a single node. More concretely, we ran
MemSQL on a single machine, by directly querying a leaf node –
we found that this provides highest throughput for both OLTP and
OLAP. Furthermore, we colocated the TPC-C clients on the same
machine as the database, as we found that when they were running
on a separate machine, the database engine was not saturated. To
avoid performance interference due to the co-location, we dedicate
4 physical cores of the machine to the TPC-C clients and the re-
maining 12 to the MemSQL engine.

The results are shown in Figures 8a, 8b, and 8c for HANA,
MemSQL and BatchDB respectively. We use finer granularity for
the workload size for HANA and MemSQL as both systems reach
maximum throughput and exhibit higher performance interactions
already for smaller number of clients compared to BatchDB. For all
systems we show (from left to right): the impact of OLAP work-
load on OLTP throughput; the impact of OLTP workload on OLAP
throughput; and the CPU utilization during each experiment. As we
can not show absolute performance numbers, similar to the survey
by Psaroudakis et al. [47], we only report relative system through-
put. I.e., τ and α correspond to the maximum transactional and
analytical throughput observed on the cloud machine.

With the results shown in Figure 8a we corroborate the find-
ings of Psaroudakis et al. [47] that, for HANA, resource interfer-
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Figure 9: Performance effect on OLTP workload when colocated
with a multi-threaded scan operation

ence has a significant effect on the system performance. In par-
ticular the transactional throughput is heavily affected when collo-
cated with large OLAP workloads, dropping by more than 5 times.
Psaroudakis et al. [47] reported similar degradation for OLTP through-
put for the HyPer version which relied on fork system call to han-
dle hybrid workloads. Note, that the new version of HyPer has
a different method [40], but there are no published performance
numbers when running hybrid workloads for comparison. Addi-
tionally, we could not get a hold of a new binary due to proprietary
constraints. For MemSQL (Fig. 8b) the situation is reversed – the
OLAP throughput is the one that suffers from high OLTP workload,
also dropping by more than five times. Unlike for SAP HANA and
MemSQL, BatchDB (Fig. 8c) is able to provide high performance
isolation for both transactional and analytical workloads similarly
as to the results for our on-premises machine (Fig. 7).

The experiments on related systems show that having dedicated
resources for each workload type is necessary for isolating perfor-
mance as, depending on the database engine’s scheduling policies,
performance of one or another workload may be significantly af-
fected. An immediate solution for HANA and MemSQL would
be to have two dedicated sets of CPU cores for OLTP and OLAP
workloads respectively. However, as these systems handle both
OLTP and OLAP requests on the same replica there will be implicit
sharing of resources such as CPU caches and memory bandwidth,
which can also cause performance degradation for the OLTP work-
load as we show in Section 8.6.

8.6 Implicit Resource Sharing
In this experiment we evaluate the impact that a standard OLAP
operation, (i.e., a multi-threaded scan operator), can have on the
performance of an OLTP workload when colocated on the same
NUMA node. Unlike in the previous experiments, in this case we
disable the update propagation from the OLTP replica, and both the
OLTP component and the analytical scan run on separate datasets
and in a separate process.

We allocate half a CPU, i.e., 5 physical cores (10 logical cores)
to the OLTP process and measure its performance in three different
scenarios: (1) Where it runs on its own, without anything else run-
ning on the machine; (2) Where it is co-located with the bandwidth-
intensive scan running on the other 5 cores, belonging to the same
CPU with its data also placed on the same NUMA node; and (3)
Where the scan runs on 5 cores on a separate CPU, with data also
placed on a separate NUMA node (local to the scan). The second
case corresponds to a setup where both OLAP and OLTP are han-
dled using the same replica of the data sharing hardware resources
such as CPU caches and main memory bandwidth. The last case re-
sembles a setup where OLTP and OLAP data are replicated across
NUMA nodes, which is what we are using in our experiments.

The results in Figure 9 show that a CPU and NUMA co-located
bandwidth-intensive scan results in almost 50% performance degra-
dation of the OLTP throughput. Similarly, we observed no perfor-
mance degradation for the performance of the scan compared to its
run in isolation (result not shown in the graph). This experiment

also shows that colocating OLTP and OLAP workload on the same
NUMA node can cause unbalanced sharing of hardware resources
and unfair disadvantage to OLTP performance. Similar observa-
tions for cross-workload interference were also reported by Tang et
al. [55] and Lo et al. [35] in their evaluation of effects of sharing
the memory sub-system among Google’s datacenter applications.

This shows that in order to achieve performance isolation, it is
very important to isolate the data of OLTP and OLAP workloads
on different NUMA nodes, which entails the need for replication.

8.7 Major Takeaways
The above experiments demonstrate the need for dedicated CPU
resources (§ 8.5) and separate replicas (§ 8.6) for isolating OLTP
and OLAP performance in a single machine. Not having dedicated
resources leads to unbalanced performance degradation of OLTP or
OLAP depending on the scheduling policy, while dedicating CPU
cores but handling both OLTP and OLAP on the same (or partially
replicated) data can degradate OLTP performance due to implicit
sharing of hardware resources such as CPU caches and memory
bandwidth. Therefore, to achieve performance isolation, we need
to trade-off space and handle OLTP and OLAP workloads on sepa-
rate replicas, isolated on at least separate NUMA nodes.

The challenge with replication is to sustain high performance for
OLAP workloads while keeping the OLAP replica up-to-date un-
der heavy OLTP load. The experiments from § 8.3 show that, by
using a physical log at fine granularity and using techniques from
fast in-memory hash join algorithms, updates can be applied faster
than any published TPC-C performance. The experiments from
§ 8.4 show that, by isolated execution of OLTP updates and OLAP
queries (through scheduling of one batch of queries and updates
at-a-time) and maintaining a single snapshot version of the data at-
a-time, the OLAP workload exhibits negligible overhead to perfor-
mance while operating on the latest versions of the data and under
heavy OLTP load. Furthermore, replicas can also be distributed
over RDMA and InfiniBand for added elasticity of the system.

Note that these techniques are generic and can be used in con-
junction with existing methods that optimize OLAP processing such
as dual column storage formats and compression.

9. CONCLUSION
In this paper we presented BatchDB, a system that efficiently

handles hybrid OLTP and OLAP workloads with strong perfor-
mance isolation. BatchDB relies on primary-secondary form of
replication with the primary replica handling OLTP workloads and
updates propagated to a secondary replica that handles OLAP work-
loads. To enable query processing on latest data with snapshot iso-
lation guarantees and minimum impact on query performance, the
queries and updates at the OLAP replica are queued and scheduled
in batches with the system working on one batch at-a-time. Fur-
thermore, updates are extracted and applied from the OLTP replica
at the OLAP replica efficiently, incurring a small overhead to over-
all execution time. Updates can also be propagated to a remote
replica via RDMA over InfiniBand for added scalability and isola-
tion of performance. The results confirm that, unlike existing sys-
tems, BatchDB is able provide high performance isolation between
the workloads leading to predictable performance.
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APPENDIX
A. ANALYTICAL QUERIES

Listing 1 shows the analytical query templates of the OLAP work-
load used for the experiments. The join predicates have been om-
mited for brevity. In the remaining predicates [NNAME] is chosen
at random from the 62 different nation names, [RNAME] is chosen
randomly from the 5 different region names, [CHAR] is a random
small case character, [DATE] is a random first day of a month be-
tween 1993 and 1997, [PRICE] is a random integer between 0
and 100, and [QUANTITY] is a random integer between 0 and 10;

Listing 1: Analytical Queries Used

−− Query 2
SELECT SUM( s _ q u a n t i t y )
FROM r e g i o n , n a t i o n , s u p p l i e r , s t o c k , i t em

WHERE [ JOIN_PREDICATES ]
AND s _ i _ i d = i _ i d AND r_name = [RNAME]
AND i _ d a t a l i k e ’ [CHAR]% ’ ;

−− Query 3
SELECT SUM( o l_amount )
FROM n a t i o n , cus tomer , o r d e r s , o r d e r l i n e
WHERE [ JOIN_PREDICATES ] AND n_name = [NNAME] ;
−− Query 5
SELECT SUM( o l_amount )
FROM r e g i o n cr , r e g i o n s r , n a t i o n cn , n a t i o n sn ,

cus tomer , s u p p l i e r , o r d e r s , o r d e r l i n e
WHERE [ JOIN_PREDICATES

AND c r . r_name = [RNAME] AND s r . r_name = [RNAME] ;
−− Query 7
SELECT SUM( o l_amount )
FROM n a t i o n cn , n a t i o n sn , cus tomer , s u p p l i e r ,

s t o c k , o r d e r s , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND cn . n_name = [NNAME_1]
AND sn . n_name = [NNAME_1]
AND o l _ d e l i v e r y _ d BETWEEN DATE ’2000−01−01 ’

AND DATE ’2020−12−31 ’ ;
−− Query 8
SELECT SUM( o l_amount )
FROM r e g i o n cr , n a t i o n cn , n a t i o n sn , cus tomer ,

o r d e r s , o r d e r l i n e , i tem , s u p p l i e r
WHERE [ JOIN_PREDICATES ]

AND c r . r_name = [RNAME]
AND sn . n_name = [NNAME]
AND i _ d a t a l i k e ’ [CHAR]% ’ ;

−− Query 9
SELECT SUM( o l_amount ) FROM o r d e r l i n e , i t em
WHERE [ JOIN_PREDICATES ]

AND i _ d a t a LIKE ’ [CHAR1 ] [ CHAR2]% ’ ;
−− Query 10
SELECT SUM( o l_amount )
FROM o r d e r l i n e WHERE o l _ d e l i v e r y _ d >= [DATE ] ;
−− Query 11
SELECT SUM( s _ o r d e r _ c n t )
FROM n a t i o n , s u p p l i e r , s t o c k
WHERE [ JOIN_PREDICATES ] AND n_name = [NNAME] ;
−− Query 12
SELECT COUNT(∗ ) FROM o r d e r s , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND o l _ d e l i v e r y _ d >= [DATE]
AND o _ c a r r i e r BETWEEN 1 AND 2 ;

−− Query 14
SELECT SUM( o l_amount ) FROM i tem , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND i _ d a t a LIKE ’ [CHAR1 ] [ CHAR2]% ’
AND o l _ d e l i v e r y _ d a t e >= [DATE ] ;

−− Query 16
SELECT COUNT(∗ )
FROM i tem , s u p p l i e r , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND i _ d a t a NOT LIKE ’ [CHAR1 ] [ CHAR2]% ’
AND s_comment LIKE ’%C o m p l a i n t s%’ ;

−− Query 17
SELECT SUM( o l_amount ) , SUM( o l _ q u a n t i t y )
FROM i tem , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND i _ d a t a LIKE ’ [CHAR]% ’
AND o l _ q u a n t i t y >= [QUANTITY ] ;

−− Query 19
SELECT SUM( o l_amount )
FROM i tem , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND i _ d a t a LIKE ’ [CHAR]% ’
AND i _ p r i c e BETWEEN [ PRICE ] AND [ PRICE ] + 10
AND o l _ q u a n t i t y BETWEEN 1 AND 1 0 ;

−− Query 20
SELECT COUNT(∗ )
FROM i tem , n a t i o n , s u p p l i e r , o r d e r l i n e
WHERE [ JOIN_PREDICATES ]

AND i _ d a t a LIKE ’ [CHAR]% ’
AND n_name = [NNAME] ;
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